
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
 Voice (402)477-9554 • FAX (402) 817-0151 • email info@microimages.com • web www.microimages.com • December 2002

Sample SML Macro Script

High quality cartographic products printed in volume on a press
may contain features that are not screened. When color separates
are used for image maps, generally only the image is screened. These
features (screened or not) use a separate printing plate and press
pass for each required special ink color. The ink is often specially
mixed by the printer to a pantone number or other color calibration
value. If a continuous tone image is added to this map, it is screened,
but white areas must be left for each of the solid color ink passes.

To demonstrate the flexibility of SML, a sample Macro Script that
creates the color separates needed to produce plates for this kind of
volume printing has been developed. The script also produces a
grayscale image suitable for screening with the color overlay areas
masked out, which allows the overlay colors to be printed at the
specified color without being muddied by underlying black.

The sample script was written to handle four colors in the printing
process: black, cyan, yellow, and red. These colors are used for the
overlays on a grayscale image. The script creates five output rasters
with preassigned names. Four of these rasters, which represent each
of the color overlays, are binary TIFF files. The image raster is 8-bit
grayscale TIFF with masked areas for the cyan, yellow, and red over-

lays. The black overlay requires no masking as it is printing black over black or gray. These
TIFF images can then be used as input to digital based printing systems. The script can be easily

modified to satisfy your project and printer’s requirements.

In the SML script overlays are initially rendered to a 24-bit composite color
raster and then the pixels of the specified four colors are
used to create binary images. The example used is sim-
plistic in that each overlay contains only one of the four
colors. Any or all of the allowed colors can be in each

overlay and will be assigned to
the appropriate binary raster dur-
ing color separation. There is a
check for pixels that are not of the

appropriate colors
during the color
separation pro-
cess. If such unknown color pixels
are found, you receive a warning that
provides the number of pixels of unknown color and asks if
you want to proceed. These pixels are not carried through the
color separation process. The script also provides a variable
that will retain the work files in RVC format, such as the 24-
bit composite color raster object with all overlays of the color separates before export to TIFF,
for visual review testing purposes. A portion of the script is provided for reference on the back
of this page.

Making Color Separates for Printing

cyan

yellow

red

black

grayscale with masks applied

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
 Voice (402)477-9554 • FAX (402) 817-0151 • email info@microimages.com • web www.microimages.com • December 2002

Partial Script for Making Color Separates from a Layout
(printsep.sml)

Macro and Tool Scripts can be created using SML in any TNTmips process that uses a View window (Options /
Customize from the View window menu bar). These scripts are then available from an icon, which you select or
design, on the toolbar. Sample scripts have been prepared to illustrate how you might use these features, which are
available only in TNTmips 6.4 or later, to assist with specific tasks you perform on a regular basis. If possible, the full
script is printed below for your quick perusal. When a script is too long to fit on one page, key sections are repro-
duced below. The sample Macro Script illustrated can be downloaded from the SML script exchange at
www.microimages.com/sml/ftpsmllink/TNT_Products_V6.8_CD.

func rgbValue (r, g, b) {
return (((b * 256) + g) * 256 + r);
}

func cleanup () {
CloseRaster(ImageRaster);
CloseRaster(OverlayRaster);
if (!KeepWorkFiles) {

imagefilename.Delete();
overlayfilename.Delete();
}

statusdialog.Destroy();
}

func ExportBinary (inkcolor) {
msg$ = “Exporting binary TIFF for “ + inkname$;
statuscontext.TextUpdate(msg$,2);
if (KeepWorkFiles) {

binaryfilename = grayscalefilename;
}

else {
binaryfilename = CreateTempFileName();
}

binaryrastname$ = “B_” + inkname$;
CreateRasterBinaryMask(OverlayRaster,binaryfilename,

binaryrastname$,inkcolor);
targetpath = targetdir$;
targetpath.Append(inkname$);
targetpath.Make();
targetpath.Append(filename$);
ExportRaster(tiffexp,targetpath,binaryfilename,binaryrastname$);
if (!KeepWorkFiles) {

binaryfilename.Delete();
}

}

targetdir$ = GetDirectory(“c:/temp”,”Select destination folder for TIFF
separates:”);

if (targetdir$ == “”) Exit();

imageres = PopupNum(“Image resolution in DPI?”,300,50,1200,0);
if (imageres < 0) Exit();
overlayres = PopupNum(“Overlay resolution in DPI?”,1200,imageres,

2400,0);
if (overlayres < 0) Exit();

statusdialog.Create(View.Form);
statuscontext = statusdialog.CreateContext();
statuscontext.Message = “Rendering Color Separations”;

resratio = overlayres / imageres;

imagecellsize = Layout.MapScale / imageres * .0254;
overlaycellsize = imagecellsize * resratio;

determines RGB
raster value from
separate R, G, B.

cleans up
temporary files

exports
binary TIFF
for specified
ink color

prompts user
for target
directory folder

determines image and
overlay resolutions.

creates
progress
dialog

group = Layout.Firstgroup;
while (group != 0) {

layer = group.FirstLayer;
while (layer != 0) {

if (layer.IsVisibleInView(hardcopyviewnum)) {
isimage = (layer.Type == “Raster”);
layer.SetVisibleInView(imageviewnum,

isimage);
layer.SetVisibleInView(overlayviewnum,

!isimage);
}

else {
layer.SetVisibleInView(imageviewnum,0);
layer.SetVisibleInView(overlayviewnum,0);
}

layer = layer.NextLayer;
}

group = group.NextGroup;
}

if (KeepWorkFiles) {
imagefilename = targetdir$;
imagefilename.Append(“image.rvc”);
imagefilename.Delete();
}

else {
imagefilename = CreateTempFileName();
}

statuscontext.TextUpdate(“Rendering images”,2);
errcode = Layout.RenderToRaster(imagefilename,”Image”,imageviewnum,

imagecellsize);
if (errcode < 0) {

PopupError(errcode);
Exit();
}

OpenRaster(ImageRaster,imagefilename,”Image”);
imagenumcols = NumCols(ImageRaster);
imagenumlins = NumLins(ImageRaster);

overlaynumcols = imagenumcols * resratio;
overlaynumlins = imagenumlins * resratio;

if (KeepWorkFiles) {
overlayfilename = targetdir$;
overlayfilename.Append(“overlay.rvc”);
overlayfilename.Delete();
}

else {
overlayfilename = CreateTempFileName();
}

statuscontext.TextUpdate(“Rendering overlays”,2);

resolution ratio between
overlay and image

computes raster cell
sizes in meters

sets layer visibility based on
whether image and visibility in
‘hardcopy’ view

renders
image raster

opens image
raster and
determines size

makes overlay raster
exact multiple of image
raster in size

renders the
overlay raster

