
                                       MicroImages, Inc.   •   TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554   •   Support +1 402 477 9562   •   info@microimages.com   •   www.microimages.com  •  December 2009

Processing LAS LIDAR Point Files
Geospatial Scripting

The illustration above left shows an LAS LIDAR point file with 216,055
points classified into the material categories shown in the legend to
the left.  Sample script LAS_GROUND was used to extract all points
classified as Ground to a new LAS file with 106,466 points (displayed
above right).

The illustration above left shows a portion of a large, high spatial-density LAS LIDAR point
file of an urban area.  The file includes 9,863,071 points, many of which have been classi-
fied (using an automated procedure) into ground and vegetation categories; the latter
categories also include buildings.  The black rectangle outlines a region object enclosing
several blocks of buildings.  Sample script LASextractByRegion.sml was used to extract all
points within this region to a new LAS file with 276,420 points (illustration above right).

LIDAR point files in the standard LAS file format can be
directly displayed and used in this native format in TNTmips
Pro.  The linked LAS files are represented in TNTmips pro-
cesses as shape objects.  Processing scripts written in the
TNT geospatial scripting language (SML) can also access
LIDAR point data directly from LAS files, process the points,
and create new LAS files to contain the result.  The LIDAR
points do not have to be imported to an internal TNT geospatial
format at any point in this processing.  SML’s ability to work
directly with native LAS files
can save a significant amount
of processing time that would
otherwise be needed to im-
port files that can contain mil-
lions of points.

The RVC_SHAPE class in
SML is used to represent a
linked LAS file.  This class
includes a MakeLAS()
method that is used to create
a new LAS file to contain the
processing output.  This
method can create LAS files
in the LAS Point Data Record
Formats 0, 1, 2, and 3 sup-
ported in LAS version 1.2.
The input LAS file can be
used as a template to set the
format of the output file.

LAS files store the spatial co-
ordinates and attributes of
each LIDAR point together in
a single record within a data-
base table.  Each point in a
linked LAS file can thus be
accessed as a record in a
shape database table, and the
data can be read, copied,
modified, and written to an
output LAS file entirely using
database constructs (database,
table, record, field, ...).

To demonstrate direct pro-
cessing of LAS files using
TNT geospatial scripts,
MicroImages has prepared
several sample scripts that are
excerpted on the reverse of

this page and available from the Scripting page at
microimages.com (http://www.microimages.com/downloads/
scripts.htm). The LAS_GROUND script illustrates how an
SML script can use LIDAR point classifications to control
processing.  It copies only points classified as Ground to a
new LAS file.  These ground points could then be used as
input to generate a bare-earth elevation raster.  The
LASextractByRegion script uses a region to extract all LI-
DAR points within the region to a new LAS file.



                                       MicroImages, Inc.   •   TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554   •   Support +1 402 477 9562   •   info@microimages.com   •   www.microimages.com  •  December 2009

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language
for scripts and queries.  These scripts can be downloaded from www.microimages.com/downloads/scripts.htm.

for i = 1 to tableIn.GetNumRecords()
{
status.BarUpdate(i, tableIn.GetNumRecords(), 0);
recordNum.Number = i;
tableIn.Read(recordNum, recordIn);

pt.x = recordIn.GetValue("X");
pt.y = recordIn.GetValue("Y");

if (Reg.IsPointInside(pt) )
{
recordIn.CopyTo(recordOut);

tableOut.AddRecord(recordOut);
}

}

write the new record
to output LAS file

copy field values from record in
input to a new record for the output

check that these map coordinates
are inside the extraction region

get map position of current point

read record from input LAS
to record container

loop through the LIDAR point records to find points inside region

class RVC_DBASE_SHAPE dbOut;
dbOut.OpenAsSubobject(lasOut, "Write");

class RVC_DBTABLE tableOut;
tableOut.Open(dbOut, 0, "Write");

class RVC_SHAPE lasOut;
lasOut.MakeLAS(path, crs, tableIn);

class RVC_GEOREFERENCE georefOut;
lasOut.GetDefaultGeoref(georefOut);
printf("Input CRS: %s\n", georefOut.GetCoordRefSys().Name);

DlgGetObject("Select input LAS shape object:",
"Shape", objItemIn, "ExistingOnly");

lasIn.Open(objItemIn, "Read");

class RVC_GEOREFERENCE georef;
lasIn.GetDefaultGeoref(georef);
crs = georef.GetCoordRefSys();

get default georeference
from input LAS file

lasIn.GetExtents(lasExtents);

class RVC_DBASE_SHAPE dbIn;
dbIn.OpenAsSubobject(lasIn, "Read");

class RVC_DBTABLE tableIn;
tableIn.Open(dbIn, 0, "Read");

selectRegion();

Excerpts of LASextractByRegion.sml
class POINT2D pt;

container for record number

record class instances for reading, copying, and writing records

open shape database
and main table for write

class RVC_DBTABLE_RECORD recordIn(tableIn);
class RVC_DBTABLE_RECORD recordOut(tableOut);
class RVC_RECORDNUM recordNum;

make output LAS file for extracted points; use method that
takes the RVC_DBTABLE class instance for the existing LAS
file to set the same point data record type for the new LAS file

get filepath for output LAS file

class FILEPATH path = GetOutputFileName("output.las",
"Select LAS file to make:", "las");

call user-defined procedure to select
and check the extraction region

open input shape database
and main table (table
number = 0) for read

get the extents of the LAS shape object for comparison with region

get input LAS shape object

Excerpts of LAS_GROUND.sml
class RVC_SHAPE lasIn;
class RVC_OBJITEM objItemIn;
DlgGetObject("Select input LAS shape object:", "Shape", objItemIn,
"ExistingOnly");
lasIn.Open(objItemIn, "Read");

get input LAS shape object

get default georeference
from input LAS file

class RVC_GEOREFERENCE georef;
lasIn.GetDefaultGeoref(georef);

open input shape database
and main table (table
number = 0) for read

class RVC_DBASE_SHAPE dbIn;
dbIn.OpenAsSubobject(lasIn, "Read");

class RVC_DBTABLE tableIn;
tableIn.Open(dbIn, 0, "Read");

get filepath for output LAS file

class FILEPATH path = GetOutputFileName("output.las",
"Select LAS file to make:", "las");

make output LAS file for ground points; use method that takes the
RVC_DBTABLE class instance for the existing LAS file to set the
same point data record type for the new LAS file

class RVC_SHAPE lasOut;
lasOut.MakeLAS(path, georef.GetCoordRefSys(), tableIn);

open shape database
and main table for write

class RVC_DBASE_SHAPE dbOut;
dbOut.OpenAsSubobject(lasOut, "Write");
class RVC_DBTABLE tableOut;
tableOut.Open(dbOut, 0, "Write");

record class instances for reading, copying, and writing records

class RVC_DBTABLE_RECORD recordIn(tableIn);
class RVC_DBTABLE_RECORD recordOut(tableOut);
class RVC_RECORDNUM recordNum; container for record number

for i = 1 to tableIn.GetNumRecords()
{
recordNum.Number = i;
tableIn.Read(recordNum, recordIn);

if (recordIn.GetValue("Classification") == 2)
{
recordIn.CopyTo(recordOut);

tableOut.AddRecord(recordOut);
}

}

loop through LIDAR point records to find points classified as ground

read record from input LAS

check value in Classification field, copy only ground points

copy field values from record in
input to a new record for the output

write the new record
to output LAS file

class RVC_SHAPE lasIn;
class RVC_OBJITEM objItemIn;

input LAS file linked as a shape object

extents of the input LAS file in its CRSclass RECT3D lasExtents;

Coordinate reference
system of input LAS fileclass SR_COORDREFSYS crs;

class REGION Reg; region object selected

procedure to select the region object
and check that its extents overlap
those of the LAS file

proc selectRegion () {
GetInputRegion(Reg);
Reg.ConvertTo(crs);

if (lasExtents.Overlaps(Reg.Extents) == 0) {
PopupMessage("Region selected does not overlap LAS file extents;

please select another ");
selectRegion();
}

}

class STATUSCONTEXT status;
class STATUSDIALOG statusDLG;
statusDLG.Create();
status = statusDLG.CreateContext();
status.BarInit(tableIn.GetNumRecords(), 0);
status.Message = "Processing LIDAR points...";

statusDLG.Destroy();


