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Before Getting Started

You can print or read this booklet in color from MicroImages’ web site.  The
web site is also your source for the newest Getting Started booklets on other
topics.  You can download an installation guide, sample data, and the latest
version of TNTmips.

http://www.microimages.com

For much of the past decade, hyperspectral imaging has been an area of active
research and development, and hyperspectral images have been available only to
researchers.  With the recent appearance of commercial airborne hyperspectral
imaging systems, hyperspectral imaging is poised to enter the mainstream of
remote sensing.  Hyperspectral images will find many applications in resource
management, agriculture, mineral exploration, and environmental monitoring.  But
effective use of hyperspectral images requires an understanding of the nature
and limitations of the data and of various strategies for processing and interpret-
ing it.  This booklet aims to provide an introduction to the fundamental concepts
in the field of hyperspectral imaging.

Sample Data  Some illustrations in this booklet show analysis results for a hyper-
spectral scene of Cuprite, Nevada.  This scene was acquired using the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS), which is operated by the NASA
Jet Propulsion Laboratory.  The same scene is used in the exercises in  the com-
panion tutorial booklet Analyzing Hyperspectral Images.  You can download this
scene in the TNTmips Project File format (along with associated sample data)
from the MicroImages web site.

More Documentation  This booklet is intended only as a general introduction to
hyperspectral imaging.  In TNTmips, hyperspectral images can be processed and
analyzed using the Hyperspectral Analysis process (choose Image / Hyperspectral
Analysis from the TNTmips menu).  For an introduction to this process, consult
the tutorial booklet entitled Analyzing Hyperspectral Images.  Additional back-
ground information can be found in the booklet Introduction to Remote Sensing
of Environment (RSE).

TNTmips® Pro and TNTmips Free  TNTmips (the Map and Image Processing
System) comes in three versions: the professional version of TNTmips (TNTmips
Pro), the low-cost TNTmips Basic version, and the TNTmips Free version.  All
versions run exactly the same code from the TNT products DVD and have nearly
the same features.  If you did not purchase the professional version (which re-
quires a software license key) or TNTmips Basic, then TNTmips operates in
TNTmips Free mode.

Randall B. Smith, Ph.D., 5 January 2012
©MicroImages, Inc., 1999-2012
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Multispectral remote sensors such as the Landsat
Thematic Mapper and SPOT XS produce images
with a few relatively broad wavelength bands.  Hy-
perspectral remote sensors, on the other hand, collect
image data simultaneously in dozens or hundreds of
narrow, adjacent spectral bands.  These measure-
ments make it possible to derive a continuous
spectrum for each image cell, as shown in the illus-
tration below.  After adjustments for sensor,
atmospheric, and terrain effects are applied, these
image spectra can be compared with field or labo-
ratory reflectance spectra in order to recognize and
map surface materials such as particular types of
vegetation or diagnostic minerals associated with ore
deposits.

Hyperspectral images contain a wealth of data, but
interpreting them requires an understanding of ex-
actly what properties of ground materials we are
trying to measure, and how they relate to the mea-
surements actually made by the hyperspectral sensor.

Images acquired simultaneously in
many narrow, adjacent wavelength
bands.

Set of brightness values for a single
raster cell position in the
hyperspectral image.
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A plot of the brightness values
versus wavelength shows the

continuous spectrum for the
image cell, which can be used

to identify surface materials.

The technologi-
cal background
of hyperspectral
sensors is

discussed on page 4.
Pages 5-10 introduce the
concepts of spectral
reflectance of natural
materials, spectra as
vectors in n-dimensional
spectral space, and
spectral mixing.  Factors
contributing to the
measured radiance values
in an image are detailed
on pages 11-13, followed
by methods for converting
from radiance to reflec-
tance on pages 14-15.
Strategies for analyzing
hyperspectral images are
discussed on pages 16 -
21, and a list of literature
references is provided on
pages 22-23.

Welcome to Hyperspectral Imaging
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The Imaging Spectrometer
Hyperspectral images are produced by instruments called imaging spectrometers.
The development of these complex sensors has involved the convergence of two
related but distinct technologies: spectroscopy and the remote imaging of Earth
and planetary surfaces.

Spectroscopy is the study of light that is emitted by or reflected from materials
and its variation in energy with wavelength. As applied to the field of optical
remote sensing, spectroscopy deals with the spectrum of sunlight that is diffusely
reflected (scattered) by materials at the Earth�s surface.  Instruments called spec-
trometers (or spectroradiometers) are used to make ground-based or laboratory
measurements of the light reflected from a test material.  An optical dispersing
element such as a grating or prism in the spectrometer splits this light into many
narrow, adjacent wavelength bands and the energy in each band is measured by
a separate detector.  By using hundreds or even thousands of detectors, spec-
trometers can make spectral measurements of bands as narrow as 0.01 micrometers
over a wide wavelength range, typically at least 0.4 to 2.4 micrometers (visible
through middle infrared wavelength ranges).

Remote imagers are designed to focus and measure the light reflected from many
adjacent areas on the Earth�s surface.  In many digital imagers, sequential mea-
surements of small areas are made in a consistent geometric pattern as the sensor
platform moves and subsequent processing is required to assemble them into an
image.  Until recently, imagers were restricted to one or a few relatively broad
wavelength bands by limitations of detector designs and the requirements of data
storage, transmission, and processing.  Recent advances in these areas have al-
lowed the design of imagers that have spectral ranges and resolutions comparable
to ground-based spectrometers.

Dispersing
 Element

Detectors

Scan Mirror and
Other Optics

Imaging
Optics

λλλλλ

Light from
a single
ground-
resolution
cell.

Schematic diagram of the basic
elements of an imaging spec-
trometer.  Some sensors use
multiple detector arrays to mea-
sure hundreds of narrow
wavelength (λλλλλ) bands.
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Spectral Reflectance
In reflected-light spectroscopy the fundamental property that we want to obtain
is spectral reflectance: the ratio of reflected energy to incident energy as a func-
tion of wavelength.  Reflectance varies with wavelength for most materials because
energy at certain wavelengths is scattered or absorbed to different degrees.  These
reflectance variations are evident when we compare spectral reflectance curves
(plots of reflectance versus wavelength) for different materials, as in the illustra-
tion below.  Pronounced downward deflections of the spectral curves mark the
wavelength ranges for which the material selectively absorbs the incident energy.
These features are commonly called absorption bands (not to be confused with
the separate image bands in a multispectral or hyperspectral image).  The overall
shape of a spectral curve and the position and strength of absorption bands in
many cases can be used to identify and discriminate different materials.  For
example, vegetation has higher reflectance in the near infrared range and lower
reflectance of red light than soils.

Representative spectral reflectance curves for several common Earth surface ma-
terials over the visible light to reflected infrared spectral range.  The spectral bands
used in several multispectral satellite remote sensors are shown at the top for
comparison.  Reflectance is a unitless quantity that ranges in value from 0 to 1.0,
or it can be expressed as a percentage, as in this graph.  When spectral measure-
ments of a test material are made in the field or laboratory, values of incident
energy are also required to calculate the material�s reflectance. These values are
either measured directly or derived from measurements of light reflected (under
the same illumination conditions as the test material) from a standard reference
material with known spectral reflectance.
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Mineral Spectra

Reflectance spectra of some representative minerals (naturally occurring chemical
compounds that are the major components of rocks and soils).

In inorganic materials such as minerals, chemical composition and crystalline
structure control the shape of the spectral curve and the presence and positions of
specific absorption bands.  Wavelength-specific absorption may be caused by the
presence of particular chemical elements or ions, the ionic charge of certain ele-
ments, and the geometry of chemical bonds between elements, which is governed
in part by the crystal structure.

The illustration below shows spectra of some common minerals that provide
examples of these effects.  In the spectrum of hematite (an iron-oxide mineral), the
strong absorption in the visible light range is caused by ferric iron (Fe+3).  In
calcite, the major component of limestone, the carbonate ion (CO3

-2) is respon-
sible for the series of absorption bands between 1.8 and 2.4 micrometers (µm).
Kaolinite and montmorillonite are clay minerals that are common in soils.  The
strong absorption band near 1.4 µm in both spectra, along with the weak 1.9 µm
band in kaolinite, are due to hydroxide ions (OH-1), while the stronger 1.9 µm band
in montmorillonite is caused by bound water molecules in this hydrous clay.  In
contrast to these examples, orthoclase feldspar, a dominant mineral in granite,
shows almost no significant absorption features in the visible to middle infrared
spectral range.
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Plant Spectra

Reflectance spectra of different types of green vegetation compared to a spectral
curve for senescent (dry, yellowed) leaves.  Different portions of the spectral curves
for green vegetation are shaped by different plant components, as shown at the top.

The spectral reflectance curves of healthy green plants also have a characteristic
shape that is dictated by various plant attributes.  In the visible portion of the
spectrum, the curve shape is governed by absorption effects from chlorophyll
and other leaf pigments.  Chlorophyll absorbs visible light very effectively but
absorbs blue and red wavelengths more strongly than green, producing a charac-
teristic small reflectance peak within the green wavelength range.  As a
consequence, healthy plants appear to us as green in color.  Reflectance rises
sharply across the boundary between red and near infrared wavelengths (some-
times referred to as the red edge) to values of around 40 to 50% for most plants.
This high near-infrared reflectance is primarily due to interactions with the inter-
nal cellular structure of leaves.  Most of the remaining energy is transmitted, and
can interact with other leaves lower in the canopy.  Leaf structure varies signifi-
cantly between plant species, and can also change as a result of plant stress.  Thus
species type, plant stress, and canopy state all can affect near infrared reflectance
measurements.  Beyond 1.3 µm reflectance decreases with increasing wavelength,
except for two pronounced water absorption bands near 1.4 and 1.9 µm.

At the end of the growing season leaves lose water and chlorophyll.  Near infra-
red reflectance decreases and red reflectance increases, creating the familiar yellow,
brown, and red leaf colors of autumn.
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Spectral Libraries

Sample spectra
from the ASTER
Spectral Library.
ASTER will be one
of the instruments
on the planned
EOS AM-1
satellite, and will
record image data
in 14 channels
from the visible
through thermal
infrared wavelength
regions as part of
NASA�s Earth
Science Enterprise
program.

Several libraries of reflectance spectra of natural and man-made materials are
available for public use.  These libraries provide a source of reference spectra
that can aid the interpretation of hyperspectral and multispectral images.

ASTER Spectral Library  This library has been made available by NASA as part
of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (AS-
TER) imaging instrument program.  It includes spectral compilations from NASA�s
Jet Propulsion Laboratory, Johns Hopkins University, and the United States Geo-
logical Survey (Reston).  The ASTER spectral library currently contains nearly
2000 spectra, including minerals, rocks, soils, man-made materials, water, and
snow.  Many of the spectra cover the entire wavelength region from 0.4 to 14 µm.
The library is accessible interactively via the Worldwide Web at http://
speclib.jpl.nasa.gov.  You can search for spectra by category, view a spectral plot
for any of the retrieved spectra, and download the data for individual spectra as
a text file.  These spectra can be imported into a TNTmips spectral library.  You can
also order the ASTER spectral library on CD-ROM at no charge from the above
web address.

USGS Spectral Library  The United States Geological Survey Spectroscopy
Lab in Denver, Colorado has compiled a library of about 500 reflectance spectra
of minerals and a few plants over the wavelength range from 0.2 to 3.0 µm.  This
library is accessible online at

http://speclab.cr.usgs.gov/spectral.lib04/spectral-lib04.html.
You can browse individual spectra online, or download the entire library.  The
USGS Spectral library is also included as a standard reference library in the
TNTmips Hyperspectral Analysis process.
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Plotting Spectra in Spectral Space
The spectral plots on the previous pages provide a convenient way to visualize
the differences in spectral properties between different materials, especially when
we are comparing only a few spectra.  Spectral plots are an important tool to use
when you explore a hyperspectral image.  But to understand how a computer
compares and discriminates among a large number of spectra, it is useful to con-
sider other conceptual ways of representing spectra.

A reflectance spectrum consists of a set of reflectance values, one for each spec-
tral channel (band).  Each of these channels can be considered as one dimension
in a hypothetical n-dimensional spectral space, where n is the number of spectral
channels.  If we plot the measured reflectance value for each spectral channel on
its respective coordinate axis, we can use these coordinates to specify the loca-

tion of a point in spectral space that
mathematically represents that particular
spectrum.  A simple two-band example is
shown in the illustration.  The designated point
can also be treated mathematically as the end
point of a vector that begins at the origin of
the coordinate system.  Spectra with the same
shape but differing overall reflectance (al-
bedo) plot as vectors with the same orientation
but with endpoints at different distances from
the origin.  Shorter spectral vectors represent
darker spectra and longer vectors represent
brighter spectra.

It may be difficult to visualize such a plot for
an image involving more than three wave-

length bands, but it is mathematically possible to construct a hyperdimensional
spectral space defined by dozens or hundreds of mutually-perpendicular coordi-
nate axes.  Each spectrum being considered occupies a position in this
n-dimensional spectral space.  Similarity between spectra can be judged by the
relative closeness of these positions (spectral distance) or by how small the angle
is between the spectral vectors.

The spectral reflectance curves shown on the previous pages for various materi-
als represent �averages� or �typical examples�.  All natural materials exhibit
some variability in composition and structure that results in variability in their
reflectance spectra.  If we obtain spectra from a number of examples of a mate-
rial, the resulting spectral points will define a small cloud in n-dimensional spectral
space, rather than plotting at one single location.
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Spatial Resolution and Mixed Spectra
An imaging spectrometer makes spectral measurements of many small patches of
the Earth�s surface, each of which is represented as a pixel (raster cell) in the
hyperspectral image.  The size of the ground area represented by a single set of
spectral measurements defines the spatial resolution of the image and depends
on the sensor design and the height of the sensor above the surface.  NASA�s
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for example, has a
spatial resolution of 20 meters when flown at its typical altitude of 20 kilometers,
but a 4-meter resolution when flown at an altitude of 4 kilometers.

When the size of the ground
resolution cell is large, it is
more likely that more than
one material contributes to
an individual spectrum mea-
sured by the sensor. The
result is a composite or
mixed spectrum, and the
�pure� spectra that contrib-
ute to the mixture are called
endmember spectra.

Spectral mixtures can be
macroscopic or intimate.  In a macroscopic mixture each reflected photon inter-
acts with only one surface material.  The energy reflected from the materials
combines additively, so that each material�s contribution to the composite spec-
trum is directly proportional to its area within the pixel.  An example of such a

linear mixture is shown in the illustration
above, which could represent a patchwork
of vegetation and bare soil.  In spectral space
each endmember spectrum defines the end
of a mixing line (for two endmembers) or
the corner of a mixing space (for greater num-
bers of endmembers).  Later we will discuss
how the endmember fractions can be calcu-
lated for each pixel.  In an intimate mixture,
such as the microscopic mixture of mineral
particles found in soils, a single photon in-
teracts with more than one material.  Such
mixtures are nonlinear in character and there-
fore more difficult to unravel.
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Radiance and Reflectance
From the discussions on the preceding pages, it should be clear that spectral
reflectance is a property of ground features that we would like to be able to mea-
sure precisely and accurately using an airborne or satellite hyperspectral sensor.
But look at the brightness spectrum in the illustration below.  This is the average
of 25 image spectra measured by the AVIRIS sensor over a bright dry lake bed
surface in the Cuprite, Nevada scene. The input spectra have been adjusted for
sensor effects using on-board calibration data, but no other transformations have
been applied.

This spectrum does not bear much resemblance to the reflectance spectra illus-
trated previously.  This is because the sensor has simply measured the amount of
reflected light reaching it in each wavelength band (spectral radiance), in this
case from an altitude of 20 kilometers.  The spectral reflectance of the surface
materials is only one of the factors affecting these measured values.  The spectral
reflectance curve for the sample area is actually relatively flat and featureless.

In addition to surface reflectance, the spectral radiance measured by a remote
sensor depends on the spectrum of the input solar energy, interactions of this
energy during its downward and upward passages through the atmosphere, the
geometry of illumination for individual areas on the ground, and characteristics
of the sensor system.  These additional factors not only affect our ability to re-
trieve accurate spectral reflectance values for ground features, but also introduce
additional within-scene variability which hampers comparisons between individual
image cells.  These factors are discussed in more detail on the next two pages.
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Source Illumination  The figure below shows a typical solar irradiance curve
for the top of the Earth�s atmosphere.  The incoming solar energy varies greatly
with wavelength, peaking in the range of visible light.  The spectrum of incoming
solar energy at the time an image was acquired must be known, assumed, or
derived indirectly from other measurements in order to convert image radiance
values to reflectance.

Illumination Geometry  The amount of energy reflected by an area on the ground
depends on the amount of solar energy illuminating the area, which in turn de-
pends on the angle of incidence: the angle between the path of the incoming
energy and a line perpendicular to the ground surface.  Specifically, the energy
received at each wavelength (Eg) varies as the cosine of the angle of incidence
(θ): Eg = Eo x cos θ, where Eo is the amount of incoming energy.  The energy
received by any ground area therefore varies as the sun�s height changes with
time of day and season.  If the terrain is not flat, the energy received also varies

instantaneously across a scene because
of differences in slope angle and direc-
tion.

Shadowing  The amount of illumina-
tion received by an area can also be
reduced by shadows.  Shadows cast by
topographic features or clouds can af-
fect areas including many contiguous
image cells.  Trees, crop rows, rock out-

crops, or other small objects can also cast shadows that are confined to an individual
image cell.  Both types of shadows have the effect of lowering the measured
brightness across all wavelengths for the affected pixels.

Illumination Factors

Illumination differences can arise from
differing incidence angles (θθθθθ) as for A
and B, or from shadowing (C).
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Atmospheric Effects  Even a relatively clear atmosphere interacts with incom-
ing and reflected solar energy.  For certain wavelengths these interactions reduce
the amount of incoming energy reaching the ground and further reduce the amount
of reflected energy reaching an airborne or satellite sensor. The transmittance of
the atmosphere is reduced by absorption by certain gases and by scattering by gas
molecules and particulates.  These effects combine to produce the transmittance
curve illustrated below.  The pronounced absorption features near 1.4 and 1.9
µm, caused by water vapor and carbon dioxide, reduce incident and reflected
energy almost completely, so little useful information can be obtained from im-
age bands in these regions.  Not shown by this curve is the effect of light scattered
upward by the atmosphere.  This scattered light adds to the radiance measured by
the sensor in the visible and near-infrared wavelengths, and is called path radi-
ance.  Atmospheric effects may also differ between areas in a single scene if
atmospheric conditions are spatially variable or if there are significant ground
elevation differences that vary the path length of radiation through the atmo-
sphere.

Sensor Effects  A sensor converts detected radiance in each wavelength channel
to an electric signal which is scaled and quantized into discrete integer values
that represent �encoded� radiance values.  Variations between detectors within
an array, as well as temporal changes in detectors, may require that raw measure-
ments be scaled and/or offset to produce comparable values.

Plot of atmospheric transmittance versus wavelength for typical atmospheric con-
ditions.  Transmittance is the proportion of the incident solar energy that reaches the
ground surface.  Absorption by the labeled gases causes pronounced lows in the
curve, while  scattering is responsible for the smooth decrease in transmittance with
decreasing wavelength in the near infrared through visible wavelength range.
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In order to directly compare hyperspectral image spectra with reference reflec-
tance spectra, the encoded radiance values in the image must be converted to
reflectance.  A comprehensive conversion must account for the solar source spec-
trum, lighting effects due to sun angle and topography, atmospheric transmission,
and sensor gain.  In mathematical terms, the ground reflectance spectrum is mul-
tiplied (on a wavelength per wavelength basis) by these effects to produce the
measured radiance spectrum.  Two other effects contribute in an additive fashion
to the radiance spectrum: sensor offset (internal instrument noise) and path radi-
ance due to atmospheric scattering.  Several commonly used reflectance conversion
strategies are discussed below and on the following page.  Some strategies use
only information drawn from the image, while others require varying degrees of
knowledge of the surface reflectance properties and the atmospheric conditions
at the time the image was acquired.

Flat Field Conversion  This image-based method requires that the image in-
clude a uniform area that has a relatively flat spectral reflectance curve.  The
mean spectrum of such an area would be dominated by the combined effects of
solar irradiance and atmospheric scattering and absorption  The scene is con-
verted to �relative� reflectance by dividing each image spectrum by the flat field
mean spectrum.  The selected flat field should be bright in order to reduce the
effects of image noise on the conversion.  Since few if any materials in natural
landscapes have a completely flat reflectance spectrum, finding a suitable �flat
field� is difficult for most scenes.  For desert scenes, salt-encrusted dry lake beds
present a relatively flat spectrum, and bright man-made materials such as con-
crete may serve in urban scenes.  Any significant spectral absorption features in
the flat field spectrum will give rise to spurious features in the calculated relative
reflectance spectra.  If there is significant elevation variation within the scene,
the converted spectra will also incorporate residual effects of topographic shad-
ing and atmospheric path differences.

Average Relative Reflectance Conversion  This method also normalizes image
spectra by dividing by a mean spectrum, but derives the mean spectrum from the
entire image.  Before computing the mean spectrum, the radiance values in each
image spectrum are scaled so that their sum is constant over the entire image.
This adjustment largely removes topographic shading and other overall bright-
ness variations. The method assumes that the scene is heterogeneous enough that
spatial variations in spectral reflectance characteristics will cancel out, produc-
ing a mean spectrum similar to the flat field spectrum described above.  This
assumption is not true of all scenes, and when it is not true the method will
produce relative reflectance spectra that contain spurious spectral features.

Reflectance Conversion I
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Reflectance Conversion II
The image-based conversion methods discussed on the previous page only ac-
count for multiplicative contributions to the image spectra.  Most studies that
have used these methods have focused on mapping minerals using shortwave
infrared spectra (2.0 to 2.5 µm) for which the additive effect of atmospheric path
radiance is minimal.  If the spectra to be analyzed include the visible and near
infrared ranges, however, path radiance effects should not be neglected.  If the
scene includes dark materials or deep topographic shadows, an approximate cor-
rection can be made by determining (for each band) the minimum brightness
value (or the average value of a shadowed area) and subtracting it from each pixel
in the band.

Empirical Line Method  Field researchers using hyperspectral imagery typically
use field reflectance measurements from the image area to convert the image data
to reflectance.  Field reflectance spectra must be acquired from two or more uni-
form ground target areas.  Target areas should have widely different brightness
and be large enough to recognize in the image.  Using the image radiance and
ground reflectance values for the target areas, a linear equation relating radiance
to reflectance can be derived for each image band.
In a plot of radiance versus reflectance, the slope of
the calculated line quantifies the combined effects
of the multiplicative radiance factors (gain), while
the intercept with the radiance axis represents the
additive component (offset).  These values are then
used to convert each image band to apparent reflec-
tance.  The final values should be considered
�apparent� reflectance because the conversion does
not account for possible effects of topography
within the scene (shading and atmospheric path
length differences).

Modeling Methods  Radiative-transfer computer
models start with a simulated solar irradiance spectrum, then compute the scene
radiance effects of solar elevation (derived from the day and time of the scene)
and atmospheric scattering and absorption.  In the absence of measurements of
actual atmospheric conditions, the user must estimate some input parameters,
such as amount and distribution of scattering agents.  Absorption by well-mixed
gases (CO2 and O2) is assumed to be uniform across a scene but absorption due
to water vapor is often variable.  Water vapor absorption effects can be estimated
and corrected individually for each image pixel using portions of the spectra that
include water absorption bands.  The final apparent reflectance values may still
incorporate the effects of topographic shading, however.
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Bright target

Dark target

Slope = gain

Intercept = offset

Reflectance conversion
parameters for a single
image band using known
target reflectance values.
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Strategies for Image Analysis
The table below lists some of the imaging spectrometers currently being operated
for research or commercial purposes.  The hyperspectral images produced by
these sensors present a challenge for the analyst.  They provide the fine spectral
resolution needed to characterize the spectral properties of surface materials but
the volume of data in a single scene can seem overwhelming.  The difference in
spectral information between two adjacent wavelength bands is typically very
small and their grayscale images therefore appear nearly identical.  Much of the
data in a scene therefore would seem to be redundant, but embedded in it is
critical information that often can be used to identify the ground surface materi-
als.  Finding appropriate tools and approaches for visualizing and analyzing the
essential information in a hyperspectral scene remains an area of active research.

Most approaches to analyzing hyperspectral images concentrate on the spectral
information in individual image cells, rather than spatial variations within indi-
vidual bands or groups of bands.  The statistical classification (clustering) methods
often used with multispectral images can also be applied to hyperspectral images
but may need to be adapted to handle their high dimensionality (Landgrebe, in
press).  More sophisticated methods combine both spectral and spatial analysis.
The following pages detail some of the popular methods of analyzing the spectral
content of hyperspectral images.

A Sample of Research and Commercial Imaging Spectrometers
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detinU
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scinortcepSdetargetnI
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secneicShcraeShtraE
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Match Each Image Spectrum
One approach to analyzing a hyperspectral image is to attempt to match each
image spectrum individually to one of the reference reflectance spectra in a spec-
tral library.  This approach requires an accurate conversion of image spectra to
reflectance.  It works best if the scene includes extensive areas of essentially pure
materials that have corresponding reflectance spectra in the reference library.  An
observed spectrum will typically show varying degrees of match to a number of
similar reference spectra. The matching reference spectra must be ranked using
some measure of goodness of fit, with the best match designated the �winner.�

Spectral matching is compli-
cated by the fact that most
hyperspectral scenes include
many image pixels that repre-
sent spatial mixtures of different
materials (see page 10).  The re-
sulting composite image
spectra may match a variety of
�pure� reference spectra to
varying degrees, perhaps in-
cluding some spectra of
materials that are not actually
present.  If the best-matching reference spectrum has a sufficient fit to the image
spectrum, then this material is probably the dominant one in the mixture and the
pixel is assigned to this material.  If no reference spectrum achieves a sufficient
match, then no endmember dominates, and the pixel should be left unassigned.
The result is a �material map� of the image that portrays the dominant material
for most of the image cells, such as the example shown below.  Sample mixed
spectra can be included in the library to improve the mapping, but it is usually not
possible to include all possible mixtures (and all mixture proportions) in the ref-

erence library.

Mineral map for part of the
Cuprite AVIRIS scene,
created by matching
image spectra to mineral
spectra in the USGS
Spectral Library.  White
areas did not produce a
sufficient match to any of
the selected reflectance
spectra, and so are left
unassigned.

Alunite

Kaolinite

Alunite + Kaolinite

Montmorillonite

Chalcedony

Minerals

Sample image spectrum and a matched spectrum
of the mineral alunite from the USGS Spectral
Library (goodness of fit = 0.91).
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Spectral Matching Methods

Reflectance spectrum for the mineral gypsum (A) with
several absorption features.  Curve B shows the
continuum for the spectrum, and C the spectrum after
removal of the continuum.
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The shape of a reflectance spectrum can usually be broken down into two com-
ponents: broad, smoothly changing regions that define the general shape of the
spectrum and narrow, trough-like absorption features.  This distinction leads to
two different approaches to matching image spectra with reference spectra.

Many pure materials, such as minerals, can be recognized by the position, strength
(depth), and shape of their absorption features.  One common matching strategy
attempts to match only the absorption features in each candidate reference spec-
trum and ignores other parts of the spectrum.  A unique set of wavelength regions
is therefore examined for each reference candidate, determined by the locations of
its absorption features.  The local position and slope of the spectrum can affect
the strength and shape of an absorption feature, so these parameters are usually
determined relative to the continuum: the upper limit of the spectrum�s general
shape.  The continuum is computed for each wavelength subset and removed by
dividing the reflectance at each spectral channel by its corresponding continuum
value.  Absorption features can then be matched using a set of derived values
(including depth and the width at half-depth), or by using the complete shape of
the feature.  These types
of procedures have been
organized into an expert
system by researchers at
the U.S. Geological Sur-
vey Spectroscopy Lab
(Clark and others, 1990).

Many other materials,
such as rocks and soils,
may lack distinctive ab-
sorption features.  These
spectra must be character-
ized by their overall shape.
Matching procedures uti-
lize full spectra (omitting
noisy image bands severely affected by atmospheric absorption) or a uniform
wavelength subset for all candidate materials.  One approach to matching seeks
the spectrum with the minimum difference in reflectance (band per band) from the
image spectrum (quantified by the square root of the sum of the squared errors).
Another approach treats each spectrum as a vector in spectral space and finds
the reference spectrum making the smallest angle with the observed image spec-
trum.
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Linear Unmixing

Portion of an AVIRIS
scene with forest, bare
and vegetated fields,
and a river, shown with
a color-infrared band
combination (vegetation
is red).  Fraction images
from linear unmixing are
shown below.

Vegetation fraction

Water / shade fraction

Soil fraction

Linear unmixing is an alternative approach to simple
spectral matching.  Its underlying premise is that a scene
includes a relatively small number of common materi-
als with more or less constant spectral properties.
Furthermore, much of the spectral variability in a scene
can be attributed to spatial mixing, in varying propor-
tions, of these common endmember components.  If
we can identify the endmember spectra, we can math-
ematically �unmix� each pixel�s spectrum to identify
the relative abundance of each endmember material.

The unmixing procedure models each image spectrum
as the sum of the fractional abundances of the
endmember spectra, with the further constraint that the
fractions should sum to 1.0.  The best-fitting set of frac-
tions is found using the same spectral-matching
procedure described on the previous page.  A fraction
image for each endmember distills the abundance in-
formation into a form that is readily interpreted and
manipulated.  An image showing the residual error for
each pixel helps identify parts of the scene that are not
adequately modeled by the selected set of endmembers.

The challenge in linear unmixing is to identify a set of
spectral endmembers that correspond to actual physi-
cal components on the surface.  Endmembers can be
defined directly from the image using field information
or an empirical selection technique such as the one
outlined on the next page can be used.  Alternatively,
endmember reflectance spectra can be selected from a
reference library, but this approach requires that the
image has been accurately converted to reflectance.
Variations in lighting can be included directly in the
mixing model by defining a �shade� endmember that
can mix with the actual material spectra.  A shade spec-
trum can be obtained directly from a deeply shadowed
portion of the image.  In the absence of deep shadows,
the spectrum of a dark asphalt surface or a deep water
body can approximate the shade spectrum, as in the
example to the right.
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Defining Image Endmembers
When spectral endmembers are defined from a hyperspectral image, each image
endmember should have the maximum abundance of the physical material that it
represents.  (Ideally, each endmember would be a single pure material, but �pure�
pixels of each endmember may not be present in the image).  If image spectra are
represented as points in an n-dimensional scatterplot, the endmembers should
correspond to cusps at the edge of the cloud of spectral points.

One common procedure for isolating candidate image endmembers involves sev-
eral steps.  Because of the high degree of correlation between adjacent spectral
bands, the dimensionality of the dataset first can be reduced by applying the
Minimum Noise Fraction (MNF) transform and retaining the small number of
noise-free components.  The MNF transform (Green et al. 1988) is a noise-ad-
justed principal components transform that estimates and equalizes the amount
of noise in each image band to ensure that output components are ordered by
their amount of image content.  Second, an automated procedure is applied to the
MNF components to find the extreme spectra around the margins of the n-dimen-
sional data cloud.  One such procedure is the Pixel Purity Index (PPI).  It examines
a series of randomly-oriented directions radiating outward from the origin of the
coordinate space.  For each test direction, all spectral points are projected onto
the test vector, and the extreme spectra (low and high) are noted.  As directions
are tested, the process tallies the number of times each image cell is found to be
extreme.  Pixels with high values in the resulting PPI raster should correspond
primarily to the edges of the MNF data cloud.  In the third step, the PPI raster is
used to select pixels from the MNF dataset for viewing in a rotating n-dimen-
sional scatterplot (using a tool such as the
n-Dimensional Visualizer in the TNTmips
Hyperspectral Analysis process).  By
viewing the PPI spectral cloud from vari-
ous directions, the analyst can identify
significant directions, mark the spectral
points that are extreme in those directions,
and save an image of the marked cells.
Finally, the marked cell image is overlaid
on the original hyperspectral image and
used as a guide to select and examine the
image spectra. The best candidate
endmember spectra are then saved in a
spectral library for use in unmixing the hy-
perspectral image.

Simple two-component plot showing
one of the random vector directions
(arrow) tested by the Pixel Purity In-
dex procedure.  All spectral points are
projected to each test vector, and ex-
treme points are noted.
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Partial Unmixing
Some hyperspectral image applications do not require finding the fractional abun-
dance of all endmember components in the scene.  Instead the objective may be
to detect the presence and abundance of a single target material.  In this case a
complete spectral unmixing is unnecessary.  Each pixel can be treated as a poten-
tial mixture of the target spectral signature and a composite signature representing
all other materials in the scene.  Finding the abundance of the target component
is then essentially a partial unmixing problem.

Methods for detecting a target spectrum against a background of unknown spec-
tra are often referred to as matched filters, a term borrowed from radio signal
processing.  Various matched filtering algorithms have been developed, includ-
ing orthogonal subspace projection and constrained energy minimization (Farrand
and Harsanyi, 1994).  All of these approaches perform a mathematical transfor-
mation of the image spectra to accentuate the contribution of the target spectrum
while minimizing the background.  In a geometric sense, matched filter methods
find a projection of the n-dimensional spectral space that shows the full range of
abundance of the target spectrum but �hides� the variability of the background.
In most instances the spectra that contribute to the background are unknown, so
most matched filters use statistical methods to estimate the composite background
signature from the image itself.  Some methods only work well when the target
material is rare and does not contribute significantly to the background signature.
A modified version of matched filtering uses derivatives of the spectra rather
than the spectra themselves, which improves the matching of spectra with differ-
ing overall brightness.

Fraction images produced by Matched Filtering (left) and Derivative Matched
Filtering (right) for a portion of the Cuprite AVIRIS scene.  The target image
spectrum represents the mineral alunite.  Brighter tones indicate pixels with
higher alunite fractions.  The image produced by Derivative Matched Filtering
shows less image noise, sharper boundaries, and better contrast between
areas with differing alunite fractions.
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Advanced Software for Geospatial Analysis
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MicroImages, Inc.
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absorption

bands..............................................5-7
atmospheric..............................13,18

atmosphere
absorption by...........................13,18
scattering by.................................13

continuum........................................18
illumination.......................................11,12
imaging spectrometer.....................4,10,16
irradiance, solar.......................................12
linear unmixing..................................19-21
matched filtering.....................................21
matching, spectral.............................17,18
minimum noise fraction transform..........20
pixel purity index....................................20
resolution, spatial....................................10
scattering..........................................4,5,13
sensor effects..........................................13
shadowing...............................................12
spectral libraries........................................8

spectral radiance.....................................11
spectral reflectance.............................5-11

converting image to....................14-15
curve   See spectrum
defined............................................5

spectral space...........................................9
spectrometer............................................4
spectroscopy.........................................4,5
spectrum (spectra)

endmember...............................19,20
image....................................3,17-20
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mineral......................................6
mixed............................................10
plant...............................................7
plotting...........................................9
reflectance....................................5-11
soil..................................................5
solar..............................................12
water...............................................5

MicroImages, Inc. publishes a complete line of professional software for advanced geospatial
data visualization, analysis, and publishing.  Contact us or visit our web site for detailed product
information.

TNTmips Pro TNTmips Pro is a professional system for fully integrated GIS, image
analysis, CAD, TIN, desktop cartography, and geospatial database management.

TNTmips Basic TNTmips Basic is a low-cost version of TNTmips for small projects.

TNTmips Free TNTmips Free is a free version of TNTmips for students and profession-
als with small projects.  You can download TNTmips Free from MicroImages’ web site.

TNTedit TNTedit provides interactive tools to create, georeference, and edit vector, image,
CAD, TIN, and relational database project materials in a wide variety of formats.

TNTview TNTview has the same powerful display features as TNTmips and is perfect for
those who do not need the technical processing and preparation features of TNTmips.

TNTatlas TNTatlas lets you publish and distribute your spatial project materials on CD or
DVD at low cost.  TNTatlas CDs/DVDs can be used on any popular computing platform.
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